AIR-STEAM SYSTEM PRODUCES THE DELICIOUS!!

EFFECTIVE DESIGHN NEEDS LESS SPACE \& SAVES ENERGY!!

EXAMPLE
KYUNGHAN Co., Ltd.

STERI-ACE REQURED UTILITIES

	PRS-10-I	PRS-20-I	PRS-30-I	PRS-40-I
COMPRESSOR	$3.7 \mathrm{KW}(5 \mathrm{HP})$	5.5KW(7.5HP)	7.5KW(10HP)	11 KW (15HP)
AIR RESERVOIR TANK	TANK LEVEL UP	1000 l	1300 l	1500 l
AIR INLET	10A	10A	10A	10A
COOLING WATER SUPPLY PUMP	1HP 1PHASE	2 HP 1PHASE	3HP 3PHASE	3HP 3PHASE
COOLING WATER INLET	20A	40A	50A	50A
COOLING WATER TANK	1 TON	2 TON	3 TON	4 TON
BOILER	$300 \mathrm{~kg} / \mathrm{hr}$	$500 \mathrm{~kg} / \mathrm{hr}$	$800 \mathrm{~kg} / \mathrm{hr}$	$1000 \mathrm{~kg} / \mathrm{hr}$
STEAM INLET	25 A	40A	50A	50A
SIZE OF VESSEL ($W * H *$)	$750 * 1030 * 1260$	750*20471260	$750 * 3037 * 1260$	$750 * 4047 * 1260$
CHAMBER SIZE (W *H*L)	$620 * 950 * 960$	$620 * 1900 * 960$	$620 * 2850 * 960$	$620 * 3800 * 960$
DIMENSION (W * $\mathrm{H} * \mathrm{~L}$)	$1700 * 1400 * 2150$	$1700 * 1400 * 2150$	1850*3400*2200	$1850 * 4400 * 2400$

STERI-ACE SPECIFICATION

	PRS-10-I	PRS-20-I	PRS-30-I	PRS-40-I
MAX. WORKING PRESS•TEMP (kg/ $\mathrm{cm}^{3} \mathrm{G},{ }^{\circ} \mathrm{C}$)	$2.0 / 125^{\circ} \mathrm{C}$			
CHAMBER VOLUME (ℓ)	1035	1975	2920	3850
WEIGHT OF EQUIPMENT(kg)	1850	2500	3200	4000
STEAM CONSUMPTION(kg/1batch)	65	125	200	300
REQUIRED STEAM ($\mathrm{kg} / \mathrm{Hr}$)	$200 \mathrm{~kg} / \mathrm{hr} \mathrm{MIN}$.	$400 \mathrm{~kg} / \mathrm{hr} \mathrm{MIN}$.	$600 \mathrm{~kg} / \mathrm{hr} \mathrm{MIN}$.	$800 \mathrm{~kg} / \mathrm{hr} \mathrm{MIN}$.
COOLING WATER ($\ell / 1$ batch. 15 min.$)$	300	600	900	1200
REQUIRED COMPRESSOR(kW)	3.7	5.5	7.5	11
NO. OF CART	1	2	3	4
DIMENSION OF CHAMBER $W *$ **H(mm)	$620 * 950 * 960$	$620 * 1900 * 960$	$620 * 2850 * 960$	$620 * 3800 * 960$
DIMENSION OF MACHINE W*L*H(mm)	1680*1365*2150	1680*2365*2150	1680*3365*2300	1680*4365*2400
Tray (30 mm 기준)	32TRAYS* 1SET	32TRAYS*2SET	32TRAYS*3SET	32TRAYS*4SET
NO. OF POUCH (130*170*20(mm)	768POUCH/ 1Batch	1536POUCH/ 1Batch	2304POUCH/ 1Batch	3072POUCH/ 1Batch
CAPACITY ($200 \mathrm{~g} /$ pouch)	$153 \mathrm{~kg} /$ 1Batch	$307 \mathrm{~kg} /$ 1Batch	$460 \mathrm{~kg} /$ 1Batch	$614 \mathrm{~kg} / 1$ Batch

「 STERI-ACE 」 WORKING PRINCIPLE

An air steam type retort sterilizer, STERI-ACE, was developed on the foundation of an autoclave that are used in pharmaceutical industries. The drawback from existing steam type and retort sterilizer which is ununiformity of temperature distribution inside of chamber due to Air Pocket.

「 STERI-ACE 」 WORKING PRINCIPLE

Sterilization process of STERI-ACE is divided into 4 major steps as Exhaustion, Ascension, Sterilization, Cooling and Drain.

Ascension and Sterilization process also be divided into 1st Ascension, 1st Sterilization, 2nd Ascension and 2nd Sterilization since STERI-ACE adopted Two Step Sterilization to maximize its efficiency.

EXHAUSTION PROCESS

Purpose of Exhaustion Process is to eliminate cooled and dry air inside of chamber with saturated steam to make adequate environment for sterilization. During the Exhaustion Process, a cold air or not yet heated air inside of chamber will be exchanged with preheated air and saturated steam continuously until temperature of chamber reaches set temperature.

STERILIZATION PROCESS

After Exhaustion Process is completed, STERI-ACE will proceed with Ascension Process. For STERI-ACE, it is very short since medium for heating is steam instead of heated water.

When the temperature of chamber reaches target temperature, timer will automatically start. During the Sterilization process, steam will be supplied continuously in the manner of forced circulation by suction.

COOLING PROCESS

For the Cooling Process, a primary purpose of this cooling process is to prevent pouch from rupturing. During the Sterilization process, the contents inside of pouch has been already boiled and the air has been expended due temperature. If the chamber door is opened without cooling down the products, the pouch will rupture due to differences between pressure inside of pouch and outside.

However, the temperature of product cool down before they are out of chamber, pressure balance will prevent from the rupture. Moreover, cooling process also can be used in actual cooling of product.

CYLNDRICAL VS. RECTANGULAR

Most of Retort Sterilizers have Circular shape Chamber. However, STERI-ACE of Kyunghan Co., Ltd. has Rectangular shape of Chamber which is space and energy efficient.

For Circular shape chamber, chamber itself does not require reinforcement as much as rectangular shape chamber since circular shape itself is structurally pressure resistant. For the manufacturer, it is cost saving since it requires less reinforcement as mentioned above. However, it has more dead space than a rectangular structure.

CYLINDRICAL STRUCTURE

Dimension of Cylindrical Chamber (mm): Ø1370 x 4000

Tray Loading Dimension (mm): (900 x $980 \times 900) \times 4$ sets
Volume of Cylindrical Chamber: Vol $\mathbf{C}\left(\mathrm{m}^{3}\right)=\pi / 4 * \mathrm{D}^{2} * \mathrm{~L}$

$$
=\pi / 4 * 2.15 * 3.10
$$

$$
=5.90
$$

Volume of Trays: Vol T $\left(\mathrm{m}^{3}\right)=(0.90 * 0.98 * 0.90) * 4$

$$
=3.18
$$

Dead Space cylindrical $\left(m^{3}\right)=$ Chamber Volume $\left(m^{3}\right)-$ Tray Loading Volume $\left(m^{3}\right)$

$$
\begin{aligned}
& =\text { Vol C }- \text { Vol T } \\
& =5.90-3.18 \\
& =2.72
\end{aligned}
$$

RECTANGULAR STRUCTURE

Chamber Dimension (mm): $750 \times 1260 \times 4100$
Tray Loading Dimension (mm): (640 x $960 \times 960) \times 4$ sets
Volume of Rectangular Chamber: Vol R $\left(m^{3}\right)=0.75 * 1.26 * 4.10$

$$
=3.87
$$

Volume of Trays: Vol T $\left(\mathrm{m}^{3}\right)=(0.64 * 0.96 * 0.96) * 4$

$$
=2.36
$$

Dead space rectangular $\left(m^{3}\right)=$ Chamber Volume $\left(m^{3}\right)-\operatorname{Tray} \operatorname{Volume}\left(m^{3}\right)$

$$
=\operatorname{Vol} \mathbf{R}-\operatorname{Vol} T
$$

$$
=3.87-2.36
$$

$$
=1.51
$$

RECTANGULAR STRUCTURE

Dead Space cylindrical $\left(m^{3}\right)=$ Chamber Volume $\left(m^{3}\right)-$ Tray Loading Volume $\left(m^{3}\right)$

$$
\begin{aligned}
& =\text { Vol C }- \text { Vol T } \\
& =5.90-3.18 \\
& =2.72
\end{aligned}
$$

Dead space rectangular $\left(m^{3}\right)=$ Chamber Volume $\left(m^{3}\right)-\operatorname{Tray} \operatorname{Volume}\left(m^{3}\right)$

$$
\begin{aligned}
& =\mathbf{V o l} \mathbf{R}-\mathbf{V o l ~ T} \\
& =3.87-2.36 \\
& =\mathbf{1 . 5 1}
\end{aligned}
$$

Dead Space rectangular $1.15\left(\mathrm{~m}^{3}\right)<$ Dead Space cylindrical $2.72\left(\mathrm{~m}^{3}\right)$
Therefore, Rectangular structure is more efficient than cylindrical structure.

Data Values

	Deg C	ForDit
$01 / 2$	121.6	Pref
02 R	121.6	SRef
030	121.7	0.1
04 D	1218	0.2
050	121.5	-0.1
060	121.6	0.0
070	121.2	0.0
080	122.1	0.5
090	121.7	0.1
100	1220	04
110	121.6	0.0
12 D	121.8	0.2
130	121.6	00
14 D	121.1	-0.5
15 D	121.2	-0.4
16 D	120.8	-0.7
feating		Scan z

	Degc	Folder
17 D	121.7	0.1
188	121.5	-0.1
190	121.3	-0.3
200	120.9	-0.7
210	121.4	-0.2
22 D	121.2	-0.4
23 D	1209	-0.7
240	121.2	-0.4
250	121.0	-0.6
260	121.0	-0.6
27 D	121.1	-0.5
28 D	121.0	-0.6
29 D	1209	-0.7
300	1209	-0.7
310	121.2	-0.4
320	121.1	-0.5
W19	Stat	12890

Data Display Mode
callorated CRay

Probe Teat

KYUNGHAN Co., Ltd.

